Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro.

نویسندگان

  • N Amrani
  • M Minet
  • M Le Gouar
  • F Lacroute
  • F Wyers
چکیده

In Saccharomyces cerevisiae, the single poly(A) binding protein, Pab1, is the major ribonucleoprotein associated with the poly(A) tails of mRNAs in both the nucleus and the cytoplasm. We found that Pab1 interacts with Rna15 in two-hybrid assays and in coimmunoprecipitation experiments. Overexpression of PAB1 partially but specifically suppressed the rna15-2 mutation in vivo. RNA15 codes for a component of the cleavage and polyadenylation factor CF I, one of the four factors needed for pre-mRNA 3'-end processing. We show that Pab1 and CF I copurify in anion-exchange chromatography. These data suggest that Pab1 is physically associated with CF I. Extracts from a thermosensitive pab1 mutant and from a wild-type strain immunoneutralized for Pab1 showed normal cleavage activity but a large increase in poly(A) tail length. A normal tail length was restored by adding recombinant Pab1 to the mutant extract. The longer poly(A) tails were not due to an inhibition of exonuclease activities. Pab1 has previously been implicated in the regulation of translation initiation and in cytoplasmic mRNA stability. Our data indicate that Pab1 is also a part of the 3'-end RNA-processing complex and thus participates in the control of the poly(A) tail lengths during the polyadenylation reaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual requirement for yeast hnRNP Nab2p in mRNA poly(A) tail length control and nuclear export.

Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3'-end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)-binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)(+) RNA but, in contrast to mRNA...

متن کامل

A specific role for the C-terminal region of the Poly(A)-binding protein in mRNA decay

mRNA poly(A) tails affect translation, mRNA export and mRNA stability, with translation initiation involving a direct interaction between eIF4G and the poly(A)-binding protein Pab1. The latter factor contains four RNA recognition motifs followed by a C-terminal region composed of a linker and a PABC domain. We show here that yeast mutants lacking the C-terminal domains of Pab1 display specific ...

متن کامل

Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3'-end formation.

In Saccharomyces cerevisiae, four factors [cleavage factor I (CF I), CF II, polyadenylation factor I (PF I), and poly(A) polymerase (PAP)] are required for maturation of the 3' end of the mRNA. CF I and CF II are required for cleavage; a complex of PAP and PF I, which includes CF II subunits, participates in polyadenylation, along with CF I. These factors are directed to the appropriate site on...

متن کامل

The major yeast poly(A)-binding protein is associated with cleavage factor IA and functions in premessenger RNA 3'-end formation.

Polyadenylation of premessenger RNAs occurs posttranscriptionally in the nucleus of eukaryotic cells by cleavage of the precursor and polymerization of adenosine residues. In the yeast Saccharomyces cerevisiae, the mature poly(A) tail ranges from 60 to 70 nucleotides. 3'-end processing can be reproduced in vitro with purified factors. The cleavage reaction requires cleavage factors I and II (CF...

متن کامل

Nonsense-mediated mRNA decay in yeast does not require PAB1 or a poly(A) tail.

Eukaryotic mRNAs harboring premature translation termination codons are recognized and rapidly degraded by the nonsense-mediated mRNA decay (NMD) pathway. The mechanism for discriminating between mRNAs that terminate translation prematurely and those subject to termination at natural stop codons remains unclear. Studies in multiple organisms indicate that proximity of the termination codon to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 1997